Full particle orbit effects in regular and stochastic magnetic fields
نویسندگان
چکیده
1 We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajec-tories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e. fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnec-tion. We show that a similar but more complex scenario appears in the case of particle orbits that depends in a non-trivial way on the energy and pitch angle of the particles.
منابع مشابه
Self-Fields Effects on Gain in a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and Axial Magnetic Field
In this paper, we have investigated the effects of self-fields on gain in a helical wiggler free electron laser with axial magnetic field and ion-channel guiding. The self-electric and self-magnetic fields of a relativistic electron beam passing through a helical wiggler are analyzed. The electron trajectories and the small signal gain are derived. Numerical investigation is shown that for grou...
متن کاملبررسی خواص مغناطیسی تک اتمهای فلزات واسط 3d افزوده شده بر روی بورن نیتراید شش گوشی دوبعدی
In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magne...
متن کاملOnset and saturation of ion heating by odd-parity rotating magnetic fields in a field-reversed configuration.
Heating of figure-8 orbit ions by odd-parity rotating magnetic fields (RMF(O)) applied to an elongated field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances (s congruent to omega(R)/omega) of the RMF(O) frequency, omega(R), with the figure-8 orbital frequency, omega, and is proportional to s2 for s-even resonances and to s for s-odd resonances. The thr...
متن کاملUniform stochastic web in low-dimensional Hamiltonian systems
When an unperturbed Hamiltonian is degenerate and some resonance conditions are satisfied a stochastic web is formed. A classical example of this phenomena is the wave-particle interaction in a constant uniform magnetic field. Recently, Dana has observed that for wide wave packets, the initial position of the cyclotron orbit center, xc. may influence dramatically the diffusion of particles in p...
متن کاملFull-field drift Hamiltonian particle orbits in axisymmetric tokamak geometry
A Hamiltonian/Lagrangian theory to describe guiding center orbit drift motion that is canonical in Boozer magnetic coordinates is developed to include full electrostatic and electromagnetic perturbed fields in axisymmetric tokamak geometry. Furthermore, the radial component of the equilibrium magnetic field in the covariant representation is retained and the background equilibrium state extends...
متن کامل